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Miniaturizing mobile robots offers potential benefits for
portability, cost, and access to confined spaces

Piezo-electric microactuators in
micro-electro-mechanical
fabrication systems
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How would it move? What would a meso-scale realization be?



Micro-scale to Meso-scale: From continuous bending to curved
appendage moving about an axis

~10 cm
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We isolate the contribution of gravity to simplify metrics for leg
geometries that facilitate whole-body rolling

Contact Point

J1: gravitational contribution to clockwise rotation
(as negative as possible)
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Jo: actuation effort (as small as possible)



We proposed thousands of candidates for the robot’s geometry
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We calculate J1 and J2 of each candidate robot geometry and
grouped them by the maximum leg dimension

J1: gravitational contribution to
clockwise rotation

Mean CW Moment Arm Due to Gravity (cm)
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Jo: actuation effort



Leg shape like an inverted pendulum is promising for efficient
rolling

Cumulativ& Absolute Leg Motion (rad)
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Contour plot for J1 (gravitational contribution), as a function of
body and leg angles; darker region favors to CW rolling
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Rolling sequences are discretized into three states
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——>» Normal Path

We simply follow the states in the contour plot to o @F - : Recover
Implement the event-driven controller of robot rolling ;
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Two recovery states were designed by trial-and-error
for situations where the robot does not complete the

normal rolling steps
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Walking control sequence is inspired by

iInchworm locomotion
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Prototyping

e 3D print chassis and legs
e Four geared motors, two DoFs

e (CoM adjusted by battery pack
position

Motor Shaﬁs

Control Board

e Arduino Uno microcontroller
> |_ocal PID motor control
> Event-driven gait control

> PWM control commands
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Rolling

Walking and Transition
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Videos

Recovery State 1 Recovery State 2
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Rolling is much more efficient than walking based on the plots of

COM and leg tips
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Lowest cost-of-transport in rolling among similarly-scaled robots*

Walking: 0.038 m/s, 0.67 watts, 4.62 CoT

Rolling: 0.24 m/s, 0.46 watts, 0.52 CoT
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*compared to similarly-scaled robots that have enough data reported in literature. See more details in our paper.



Conclusions

e (Closed-loop multi-modal walking/rolling motion with just 2 DoFs
and finite joint range of motion

e Novel leg geometry design process that provides guidance to
controller design

e (Competitive speed and lowest cost-of-transport (rolling), good
cost-of-transport (walking) among similarly-scaled robots

e A template for further miniaturization of multi-modal mobile robots
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Thank You!
Any guestions?
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