### Leg Shaping and Event-Driven Control of A Small-Scale, Low-DoF Two-Mode Robot **Dingkun Guo, Larissa Wermers, and Kenn R. Oldham**





## Agenda

- Motivation
- Leg Geometry Design
- Controller Design
- Prototyping
- Results
- Conclusions



# Miniaturizing mobile robots offers potential benefits for portability, cost, and access to confined spaces



### How would it move? What would a meso-scale realization be?





Piezo-electric microactuators in micro-electro-mechanical fabrication systems



### Micro-scale to Meso-scale: From continuous bending to curved appendage moving about an axis





~16 mm

## Agenda

- Motivation
- Leg Geometry Design
- Controller Design
- Prototyping
- Results
- Conclusions



### We isolate the contribution of gravity to simplify metrics for leg geometries that facilitate whole-body rolling



J<sub>1</sub>: gravitational contribution to clockwise rotation (as negative as possible)

$$J_1 = \int_{-\pi}^{\pi} \min_{\Delta\phi} r_{GP}(\theta_G, \Delta\phi) d\theta_G$$

$$J_{2} = \int_{-\pi}^{\pi} \left| \frac{d}{d\theta_{G}} \arg\min_{\Delta\phi} r_{GP}(\theta_{G}, \Delta\phi) \right| d\theta_{G}$$

J<sub>2</sub>: actuation effort (as small as possible)









### We proposed thousands of candidates for the robot's geometry













# We calculate $J_1$ and $J_2$ of each candidate robot geometry and grouped them by the maximum leg dimension

J<sub>1</sub>: gravitational contribution to clockwise rotation (as negative as possible)





# Leg shape like an inverted pendulum is promising for efficient rolling





## Agenda

- Motivation
- Leg Geometry Design
- Controller Design
- Prototyping
- Results
- Conclusions

#### 10

### Contour plot for J1 (gravitational contribution), as a function of body and leg angles; darker region favors to CW rolling



Body Angle (rad)

11

### Rolling sequences are discretized into three states



Body Angle (rad)



| closed | mid-angle | open |
|--------|-----------|------|
|        | 2         | 3    |
| in air |           |      |



## We simply follow the states in the contour plot to implement the event-driven controller of robot rolling





### Two recovery states were designed by trial-and-error for situations where the robot does not complete the normal rolling steps





14

### Walking control sequence is inspired by inchworm locomotion







## Agenda

- Motivation
- Leg Geometry Design
- Controller Design
- Prototyping
- Results
- Conclusions



## Prototyping

- 3D print chassis and legs
- Four geared motors, two DoFs
- CoM adjusted by battery pack position
- Arduino Uno microcontroller
  - Local PID motor control
  - Event-driven gait control
  - PWM control commands



17



### Rolling



### Walking and Transition







### Recovery State 1



### Recovery State 2





#### Rolling is much more efficient than walking based on the plots of **COM and leg tips** Walking





### Lowest cost-of-transport in rolling among similarly-scaled robots\*

Walking: 0.038 m/s, 0.67 watts, 4.62 CoT



\*compared to similarly-scaled robots that have enough data reported in literature. See more details in our paper.



### Conclusions

- Closed-loop multi-modal walking/rolling motion with just 2 DoFs and finite joint range of motion
- Novel leg geometry design process that provides guidance to controller design
- Competitive speed and lowest cost-of-transport (rolling), good cost-of-transport (walking) among similarly-scaled robots
- A template for further miniaturization of multi-modal mobile robots





dkguo.com/walk2roll

