Impedance Control on Delta Robots

Dingkun Guo Gaoyue Zhou

dingkung@andrew.cmu.edu gaoyuez@andrew.cmu.edu

Zhizhuo Zhou

zhizhuoz@andrew.cmu.edu

December 10, 2021

Abstract

Position control on robots are easy to implement, however, not control-
ling the motor torque can lead to dangerous high impact situations. We
implement an impedance controller in PyBullet physics simulator. We show
the ability of our impedance controller to soften impact on free-falling robots
with delta legs. Furthermore, we demonstrate the flexibility of our impedance
controller by modifying spring constant K and damping factor D. Finally, we
show cool visualizations in PyBullet.

1 Introduction

Delta robots are cheap and versatile, offering 6 degrees of freedom in a dome
shaped working area with 3 motors. They are often deployed for packaging and
sorting applications. One naive way to control delta robots is by controlling the
motor angles, #;. However, only controlling the motor angles may result in high
impact forces and dangerous situations when the robot comes into contact with
obstacles or human limbs. This impact situation occurs when the position con-
troller tries to maintain or reach a position with maximum available power of the
motor despite hitting an obstacle. This is especially dangerous if robots coexist
with humans in a shared workspace; if an industrial grade motor hits a human,
the human may experience catastrophic damage. Therefore, it is crucial to de-
velop robotic motor controllers that limit the maximum force a motor can exert
and demonstrate flexibility under impact.

Impedance control introduces a dynamic way to manipulate robots that relates
force and position. In electromagnetism, impedance is the amount of opposition
to current in an alternating current circuit and represents the ratio of voltage to cur-
rent in very simple terms. Drawing analogies electric impedance, impedance con-
trol focuses around the the ratio of force output to motion input. The impedance
controller follows a spring mass damper system and regulates the relationship be-
tween force and position, and velocity and acceleration. The main benefit for
impedance control is that we can use constants to adjust the amount of force mo-
tors exerts in reaction to external situations and use it to effectively soften sudden
impacts. In our experiments, we are able to reduce the maximum force exerted by
our delta robot during a drop scenario. We elaborate on our robotic setup and also
the mathematics of impedance control in later sections.

2 Mathematics of Impedance Control

Impedance control imposes a desired dynamic behavior to the interaction between
robot end-effector and environment. The goal is having motors acting like a virtual
mass-spring-damper system as described in Figure 1 and Equation 1 below:

Mi+Di+ Ky =F (1)

where M is mass, D is damping coefficient, and K is stiffness coefficient. We
can control how the robot behaves during an interaction with the environment by
defining its stiffness and damping coefficient, K and D.

Figure 1: The mass-spring-damping system consists of an object with mass and
connected via a srping and a damper. [?]

Then, we change the mass-spring-damper system into the imposition of a dy-
namic impedance model, shown in Equation 2 below:

M(& = Zges) + D(& — Tges) + K(— Tges) = Fegt 2)

where F,,; is external force, whose desired magnitude is specified through a gen-
eralized dynamic impedance.

After that, we add feedback control in the impedance model, and by applying
an analytical Jacobian, we convert force to torque, which can be directly used to
control motors, as shown in Equation 3 [1] below:

uy = JE(Mi + Di + Ko — Fuy) (3)

where J! is the analytical Jacobian. Or we can instead use external torques di-
rectly to find control signal as described in Equation 4 [1] below:

UT:M.Z‘—FDCE—{—KSU—Fext (4)

3 Implementation in PyBullet

We conduct our robotic simulations using the open-source PyBullet [] simulator.
To accelerate the process of development and focus on implementing the con-
troller, we use an existing tridelta robot template. The robot can be seen in Figure
2. The robot has three independent delta legs. While delta arms are generally used
for grasping, sorting, or 3D printing, we demonstrate our impedance controller in
a free fall drop setup. Our free fall drop simulation consists of three main parts:
robot URDF, impedance controller, and experimental data logging.

3.1 Robot URDF

We use an existing tripedal delta robot configuration as a base for demonstrating
impedance control. In short, the URDF file consists of definitions for a group of
links connected by joints of different types. In our case, the robot has four parts:
three separate delta robots and the base connecting all the delta robots at the top
via joints.

As shown in Figure 3, each delta robot is roughly composed of three gray up-
per legs, purple parallel lower legs, and the joints connecting them with positions
shown in the red links. Among all the joints, only the three joints connecting the

Position Control

M Impedance Control

7
DAL

freefall impact post impact

Figure 2: Visualization of tridelta robot during free fall, right after impact, and a
longer time after impact. The top row shows the robot under impedance control
and the bottom row shows the robot with pure position control. Notice how the
impedance controller folds the legs to dampen the sudden impact.

upper legs and the lower legs are of the revolute type. The revolute joints act as
motors, which allow us to effectively control the delta robot by applying forces to
these joints.

At the bottom of each delta robot, we create a constraint via a sphere connect-
ing all the parallel lower legs. This constraint simulates the end effector of the
real-world delta robot where a gripper can be attached.

Last but not least, in our demonstration of free fall impact, we create another
constraint that fixes the x and y-axis of our tripedal delta robot for stability pur-
poses.

Figure 3: Visualization of tridelta robot in resting state. The base is the gray disk
on the top connecting all three delta robots. For each delta robot, it mainly consists
of three gray upper legs, six purple parallel lower legs, and joints in the position
of the red links. The three sphere at the bottom serve as a constraint connecting
all lower legs for each delta robot.

3.2 Impedance Controller

There are multiple control modes available in PyBullet, for example, position con-
trol, torque control, velocity control, and PD control. Since the amount of torque
is the input to the system for impedance control, we use PyBullet’s torque con-
trol mode as our control interface, where we need to specify the joint to exert the
torque and the desired amount of torque to be exerted. To serve as a comparison
to impedance control, we also control the robot via position control, which takes
in the desired joint position and maximum torque allowed as inputs. Both control
modes are achieved by calling the function setJointMotorControl2.

3.3 Data Logging

In order to have detailed comparisons in our experiments, we need to access and
log the states of the robot and its joints which are available in the simulator. More
specifically, we focus on the torque exerted on the motors, the position (in joint
angles) and velocity of the motors, and the z-coordinate of the entire robot. We
use the function getJointState to obtain the current position, velocity, and torque of

the target joint. Note that for impedance control where we use torque control, the
torque exerted on the joints is instead given by our calculation from Equation 4 at
each time step. As for the robot position, we use getBasePositionAndOrientation
to access the robot base position.

4 Experiments

We conduct the free fall drop experiment using the same tridelta robot with differ-
ent motor controls and various constants in the case of impedance controller. The
ultimate goal of impedance controller is to make robots safer in an environment
with humans; thus we especially care about the maximal force exercted by the
motors.

4.1 Free Fall Impact

Figure 4 shows images taken at various timesteps of the free fall experiment with
various motor controllers. First, we notice that the baseline (B) robot with position
control has very rigid legs and an overall rigid reaction to the ground impact under
gravity. The baseline robot comes in contact with the ground for a relatively short
period of time right after impact, and as a result, the motors experience a higher
impact torque for a short amount of time. In contrast, all impedance controlled
robots (K) come in contact with the ground for a longer time after impact and
experiences lower maximum impact torque. This follows the principles of linear
momentum and force. Right before impact, the robot experiences momentum muv
where m is the mass of the robot and v is the velocity right before impact. As
the robot comes to a stop, the robot has to exert impulse, which is force times
time, equal to the inital momentum. We can see that the impulse is the area under
the graph of force and time. Notice that the graphs in Figure 4 shows the torque
exerted by one of the 9 motors and is not exactly the linear force in the direction of
gravity, however, the relationship that the area under of torque-time graph to bring
the robot to a stop is the same regardless of the controller. In position control,
we experience high torque for a shorter duration. In impedance control, we can
control how we want to slow down the robot. With a higher spring constant K,
the robot is able to exert higher force and come to a stop quicker. With a low
spring constant K, the robot exerts lower torque and instead takes a longer time to
come to a stop. Here we notice that impedance control with a high enough spring
constant K is effectively position control.

ﬁ/ﬁ} \ﬁ/ﬂl .ﬁ/ o O Y WE. WK WE WE ps W 5w s wEo W 5 5
B WV SV g Y Y Y Y Y gy ey g e g sy e gy gy

am owa e e
R e L L A i ke A A e e e A A A
K2 fi i)l‘?l ﬁ/ﬁ/ (0 - LT " nEm——" . . —

LA A DA A A A A A A A A A A A A A

WA e i

I =] % = = = I =] B =] . S = -
<5 gkt g A A A A A A T D A A A

U0 O XA » = . - = " " W R R & Y — - e
KoM WO - Y N R R g R Y Y Y g
LS ‘ S, S 2 8-} |

\‘ "‘ #\77 [\—/—!—7 [o~ \\ e

T time T ™ Y fme O * fme T ime ¢

Baseline K=1 K=2 K=5 K=10

Figure 4: Visualization showing free fall and impact of our tridelta robot in PyBul-
let with position control baseline and impedance controller (with varying spring
constant K). Plots of motor torque with respect to time is shown below for all
the visualizations above. B is the baseline position controller. All K samples are
impedance controllers with the specified constant K and the damping factor D held
constant at 0.1. For example, K1 is impedance controller with K= 1 and D =0.1.
When the legs are not touching the ground, the togrue is 0. In the end, when the
robot is standing on the ground, the torque stabilizes to roughly 1 newton meter.

We effectively showed that impedance controller can help reduce the maximal
force exerted by the motors in an impact situation. Furthermore, we demonstrated
the flexibility of an impedance controller. We see that a higher spring constant
K leads to a higher peak force and shorter impact time, and vice versa. This fine
grained control over motor behavior is incredibly useful when designing robots to
interact with objects and people in dynamic settings while factoring safety.

4.2 Varying Stiffness

In our free fall impact setting, with fixed impedance, the system behaves as a
spring-mass system. The resting state of the spring is the predetermined desired

joint position under the effect of gravity and the spring’s stiffness. From Equa-
tion 2 we can see that both K and D are tunable parameters that determine the
property of the system. In this section, we explore the effect of K, the stiffness
of the spring, and see how the robot behaves differently when free-falling from
the same initial height. Varying the stiffness of the system is crucial since it deter-
mines how drastic the system would respond when external forces are exerted. For
example, when manipulating fragile objects, we may want to lower the stiffness
of the system so we can sacrifice control accuracy in order to minimize contact
forces.

In Figure 5, we plot the z-coordinate of the robot after releasing it from the
initial position with X = 1, 10, and 100 respectively, while fixing D, the damping
factor, to be at a constant 0.01. Since higher K means we have a stiffer string,
the system will have more potential energy once the joint is moved away from
its desired joint angle. Therefore, we expect to have larger total energy in the
system for higher K. We can see from Figure 5 that system oscillates at a higher
frequency as K increases, which matches our expectation since the frequency

=4/ % where m is the mass of the spring. Also, we can see that the magnitude

of the oscillation dies off slower as K increases.

The stiffness also affects the final equilibrium position of the system. The
three pictures in the right column in Figure 5 show the equilibrium position for
each K respectively. Although the desired joint angle is the same in all cases,
since we have gravity acting downward, it counteracts the force exerted by the
joints from impedance control. As K increases, the equilibrium position becomes
closer to the predetermined desired joint angle.

4.3 Varying Damping Factor

The damping factor describes how oscillations in a system decay after some dis-
turbance. In real-world applications, introducing a damping factor is a way to limit
vibrations in the system, and it is essential for protecting the system in which it
operates. Damping removes energy from the system through resistance to motion.

In Figure 6, we plot the z-coordinate of the robot with time with D = 0.001,
0.01, and 0.1 while fixing K to be 10. From Equation 2 we can see that the
damping force counteracting the elastic force increases linearly as the velocity
of the system. In the plots, we obtain the expected behavior that the oscillation
decays faster as D increases.

4.4 Compare with Position Control

In the free-fall experiment, as indicated in Figure 4, one downside for position
control during the collision is the huge torque exerted on the motors, which can
cause severe damage to the environment and the robot itself. What if we change
the position control parameter so that the magnitude of the maximum torque al-
lowed is also below 7.5 just like impedance control with K between 1 to 10?
Figure 7 shows the comparison of the torque exerted on joint, z-coordinate of
the robot, joint position, and joint velocity for a position-controlled robot with
maximum torque limited to 7.5 (left column) and an impedance-controlled robot
with K’ = 10 and D = 0.1 (right column). As shown in the z-coordinate plots, the
robot using position control can also jump back up a few times during the free fall,
and the z-coordinate of the two robots are pretty similar. However, the robot using
impedance control has a smoother oscillation that resembles a sinusoidal wave.
Moreover, for the torque exerted on the joint, we can see that for position control,
the torque has been clipped at the 7.5 maximum allowed torque with many abrupt
changes, while impedance control gives more continuous torque changes. This
can potentially leave lighter pressure on the control system and resulting in more
natural behavior.

5 Conclusion

In conclusion, we implemented an impedance controller in PyBullet and showed
that an impedance controller is very flexible. We can adjust the constants K and
D to control the behavior of the motors. In a situation where a robot is interacting
physically with a human, we can use impedance controller to make the motor act
like a spring mass damping system to soften any sudden contacts.

References

[1] Alessandro De Luca. Impedance control. 3

[2] ProgrammerWorld says:. Design spring mass damping system in simulink, Apr 2020.
2

k:1 d: 0.01

0.6
0.5
0.4
~
0.34
0.2
01
0 2000 4000 6000 8000 10000
step
k: 10 d: 0.01
0.6
054
0.4
~
0.34
0.24
0.1
[2000 4000 6000 8000 10000
step
k: 100 d: 0.01
0.6
054
0.4
N
0.3
0.24
0.1
[2000 4000 6000 8000 10000
step

Figure 5: Plots of the robot’s z-coordinate with varying stiffness A and fixed
damping factor D along with the equilibrium positions in each case. The robot
oscillates faster at a higher frequency as K increases and comes to a resting posi-
tion with joint states closest to the desired ones.

10

k: 10 d: 0.001
0.6

0.5

0.4

03

0.2

0.1

] 2000 4000 6000 8000 10000
step

k: 10 d: 0.01
0.6

0.5

0.4

0.3

0.2

0.1

"] 2000 4000 6000 8000 10000
step

k: 10 d: 0.1
0.6

0.5

0.4

03

0.2

0.1 T u T T T T
0 2000 4000 6000 8000 10000
step

Figure 6: Plots of the robot’s z-coordinate with varying damping factor D and
fixed stiffness K. The oscillation decays faster as D increases.

11

baseline_maxTorque = 7.5 k:10 d: 0.1

-25 -25
=20 =20
-15 -15
@ y
E E
s s
-10 -10
=51 -5 (\
N | R N (\ MNSNe———
0 200 400 600 800] 200 400 600 800
step step
baseline_maxTorque = 7.5 k:10 d: 0.1
050 — 050
0.45 1 045
0.40 1 0.40
g 035 2 03s
030 030
0254 025
020 020
0 200 200 600 800 [200 400 600 800
step step
baseline_maxTorque = 7.5 k:10 d: 0.1
2.50 = 250
2254 225
2001 2.00
e 1754 e 175
g 2
2 150 g 150
E £
s s
= 1254 1z
1.00 4 1.00
0754 & 075
050 050
0 200 400 600 800 o 200 400 600 800
step step
baseline_maxTorque = 7.5 k:10 d: 0.1
L] = a0
304 30
20 20
S 104 . 10
g g
E E

-10 4 -10
-20 -20
-30 =30
0 200 400 600 800 o 200 400 600 800
step step

Figure 7: Plots of the robot’s z-coordinate with varying damping factor D and
fixed stiffness K. The oscillation decays faster as D increases.

12

