Updated: 12/7/2022

Dingkun Guo

dkguo.com/contact | Pittsburgh, PA

EDUCATION

Carnegie Mellon University, Pittsburgh, PA, GPA: 4.07/4.00

Master of Science in Robotics

University of Michigan, Ann Arbor, MI, GPA: 3.83/4.00

Bachelor of Science in Computer Science & Mechanical Engineering (Double Major, Summa Cum Laude)

Relevant Courses: Autonomous Robotics, Computer Vision, Manipulation, Artificial Intelligence, Machine Learning, Reinforcement Learning, Optimal Control, Dynamics & Modeling, Design & Manufacturing

RESEARCH EXPERIENCES

Robot Learning from Video Demonstrations in Kitchen

Research Assistant, Advisor: Prof. Chris Atkeson

- Improved object pose estimation results with multi-view voting, filters, and hand-object relationships ▶
- Þ Set up a data collection system in kitchen to record dish washing videos with eight RGB-D cameras
- Implementing optimal control algorithms to detect and classify motor primitives in videos ▶

Autonomous Walking-to-Rolling Robot Design and Control Z

Research Assistant, Advisor: Prof. Kenn Oldham

- Prototyped a robot with four 10-cm curved-beam legs as a testbed for small-scale locomotions and controls ⊾
- Created control strategies that allow robot's smooth walking-to-rolling transitions with only two degrees of freedom ▶
- Designed and wired control circuitry to fit motors, encoders, batteries, and motor drivers into a small robot body ▶
- Implemented and optimized an event-driven controller with PID loops to maximize forward velocity of the robot ▶

Uncertainty Quantification in Machine Learning Models

Research Assistant, Advisor: Prof. Xun Huan

- Analyzed sensitivity and robustness of deep neural network models for medical diagnosis
- Developed systematic capabilities to assess ML models on high-performance computing (HPC) systems ▶
- ▶ Optimized and validated a practical inference algorithm for Bayesian neural networks

PROJECTS

Robot Solving Long-horizon Tasks with Action Library

- Constructed a framework for learning long-horizon manipulation tasks by chaining a series of pre-defined primitives
- Simulated a Franka robot tracing short trajectories with TVLQR and iLQR to complete multiple tasks sequentially ▶

Adaptive Gripper for Sorting Electronics Waste

- Developed an adaptive gripping policy on a direct-driven gripper to pick up devices of different types and sizes
- Implemented kinematics, closed-loop position feedback control, and impedance control on the gripper ⊾

Autonomous Chess-Playing Robot Arm

- Integrated control and path planning algorithms on a desktop robot arm to grab and move chess pieces ▶
- Implemented a computer vision program to identify and locate chess pieces ▶

Configurable High-Throughput Puncher

- Performed mechanics analyses and engineering validation on multiple design concepts to find the best design ▶
- Designed and CAD modeled a customized mechanical apparatus for rapidly punching holes on soft materials ▶

Jan 2022 – Present

Apr 2021

Expected May 2023

Carnegie Mellon University, Pittsburgh, PA

Sep 2019 – Dec 2021

Sep 2018 – Dec 2020

University of Michigan, Ann Arbor, MI

University of Michigan, Ann Arbor, MI

Sep – Dec 2021

Jan – Apr 2021

Jan – May 2020

Page 1 of 2

Feb – Apr 2022

PUBLICATIONS

Journal Papers

- [J1] D. Guo, L. Wermers, K.R. Oldham. "Leg Shaping and Event-Driven Control of a Small-Scale, Low-DoF, Two-Mode Robot." IEEE/ASME Transactions on Mechatronics. May 2022. Also oral presented at IEEE/ASME International Conference on Advanced Intelligent Mechatronics in July 2022. [website] [paper] [slides]
- [J2] (under review) S. Prabhudesai, J. Hauth, D. Guo, A. Rao, N. Banovic, X. Huan. "Lowering The Computational Barrier: Partially Bayesian Neural Networks for Transparency in Medical Imaging AI." Frontiers in Computer Science.

Symposiums

- [S6] S. Prabhudesai, J. Hauth, D. Guo, et al. "Partially Bayesian Neural Networks: Low-Cost Bayesian Uncertainty Quantification for Deep Learning in Medical Image Segmentation." SIAM Conference on Uncertainty Quantification. April 2022. [abstract]
- [S5] D. Guo*, M. Kohler*, S. Sober*, D. Stanton*, I. Tackett*. "Configurable Puncher for Microfluidic Ports." Mechanical Engineering Capstone Design Showcase, University of Michigan. April 2020. [report] [slides]
- [S4] D. Guo, X. Huan. "Assessing Uncertainty and Robustness in a Deep Neural Network Model for the Determination of Gene Mutation Status in Gliomas." Mechanical Engineering Undergraduate Symposium, University of Michigan. April 2019. [report] [slides]
- [S3] **D. Guo**, X. Huan. "Uncertainty Quantification in Deep Neural Network Models for the Determination of Gene Mutation Status in Gliomas." Undergraduate Research Symposium, University of Michigan. April 2019. [poster]
- [S2] D. Guo, X. Huan, "Assessing Uncertainty in Neural Network Models for Predicting Gene Mutation Status in Brain Tumor Patients." Mechanical Engineering Undergraduate Symposium, University of Michigan. December 2018. [poster]
- [S1] D. Guo*, E. Zhao*, Y Zhang*, et al. "Design, Development, Construction, and Operation Plans of the First Large Space Settlement Community in Orbit Around the Planet Mercury." China Regional Final of 13th International Space Settlement Design Competition. October 2016. [proposal]

(* indicates equal contribution)

SELECTED HONORS AND AWARDS

2021	James B. Angell Scholar at the University of Michigan
2018-2021	Dean's List and University Honors in all semesters at the University of Michigan
2016	Runners-Up Team in China Final of 13th International Space Settlement Design Competition
2016	Outstanding Contributor in Public Service, granted by the Sichuan State Children Foundation
2015	Excellent Leadership Prize, granted by Chengdu No. 7 High School

<u>Skills</u>

Programming: Python, C++, JavaScript, Julia, HTML, LaTeX, and MATLAB

Softwares: ROS, PyTorch, PyBullet, OpenCV, Photoshop, Lightroom, and Final Cut Pro

Mechanical: SolidWorks, Arduino, Mill, Lathe, Water Jet, and 3D Printing