Uncertainty Quantification in Deep Neural Network Models for the Determination of Gene Mutation Status in Gliomas

Dingkun Guo Instructor: Xun Huan **MEUS WI 2019**

INTRODUCTION — Medical Background

- Magnetic resonance imaging (MRI) scans of the patient brain
 - Four types of images are generated with different settings
- Isocitrate dehydrogenase (IDH) mutation status
 - Increases survival probability
 - Critical for treatment planning

INTRODUCTION — Model

Deep neural networks were developed to predict IDH status from MRI scans [Chang et al., 2018]

Input: MRI scans of the brain

Output: prediction probability of positive IDH mutation

Deep neural network (DNN), a common data-driven Uncertainty quantification (UQ) uses statistical *model*, is trained to find relationship between input methods to produce a measure of confidence on these predictions and output

INTRODUCTION — Model

Deep neural networks were developed to predict IDH status from MRI scans [Chang et al. 2018]

- Over 22 million weights were trained using only 496 data points
- Many unknowns with few data: overfitting

Overfitting

80% ± 5%

Output: prediction probability of positive IDH mutation

Only single-value predictions; no uncertainty info

INTRODUCTION — Objective

- models systematically and rigorously
- To determine the most sensitive factors in a model
- To assess robustness of model predictions against noise

Model Setup

Noise in Model

- Analyze the sensitivity of predictions with respect to trained model weights
- Add random Gaussian noise (1%, 5%, 10%) to the trained weights

Noise in Data

- Quantify uncertainty of output due to data
- Add random Rician noise to each pixel of MRI scans

Test data: MRI scans of 63 patients from The Cancer Genome Atlas (TCGA) database

 $y = 3x^3 + 2x^2 + 1$

X

1.8

1.6

> 1.4

1.2

0.8

y

$y = 3x^3 + 2x^2 + 1$

Y

 \sim

X

1.8 -

2

> 1.4

1.2

0.8

y vs x with Different Noise in All Coefficient

$y = 3x^3 + 2x^2 + 1$

Y

X

1.6 > 1.4 1.2 0.8

2

1.8

y vs x with 5% Noise in Different Coefficient

RESULTS — Noise in Model

Adding Different Levels of Gaussian Noise to All Model Weights (10 Runs)

RESULTS — Noise in Model

Adding Different Levels of Gaussian Noise to All Model Weights (10 Runs)

- T1post Network is most sensitive to the noise
- Larger uncertainty observed when prediction probability is small
- ► T1 Network is less sensitive to large noise

RESULTS — Noise in Model

Adding Gaussian Noise to Weights in Different Layers

- 5% Gaussian noise is added to different layers of T1post Network
- Although layer 211 has many more weights than layer 1, its noisy predictions have lower uncertainty
- Layer 1 contributes more to overall predictive uncertainty than layer 211
- This suggests some weights may be much more important than others

RESULTS — Noise in Data

Comparison of Different Types of Noise in MRI images

No Noise Image

10% Gaussian Noise

10% Rician Noise

- Different noise distributions in MRI images is hard to detect by human eyes, but can cause large difference in DNN predictions
- Rician noise is more commonly used in MRI applications [Gudbjartsson, 1995]

RESULTS — Noise in Data

Adding Different Levels of Rician Noise to images (5 Runs)

RESULTS — Noise in Data

Adding Different Levels of Rician Noise to images (5 Runs)

Rician noise in images shifts predictions but produces less uncertainty than noise in weights

The model appears more robust against image noise, but becomes less accurate

DISCUSSION

- Predictions can be quite sensitive to noise in model weights, which can be affected by the quality of training data and structure of the deep neural network.
- Uncertainty should be quantified and subsequently reduced from models and data
- Enabling high-confidence predictions is imperative for decision-making on patient treatments
- Uncertainty quantification will help hospitals and developers to compare and improve models

WHAT'S NEXT

- Analyze relationship between uncertainty and other features of tumor such as size/volume
- Conduct sensitivity analysis layer by layer
- Provide a list of criteria for assessing model robustness and generalizability
- Repeat model evaluations to produce additional data for statistical analysis

REFERENCE

- Chang et al. (2018) Residual Convolutional Neural Network for the Determination of IDH Status in Lowand High- Grade Gliomas from MR Imaging, Clin Cancer Res, 24(5).
- Pedano et al. (2016) Radiology Data from The Cancer Genome Atlas Low Grade Glioma [TCGA-LGG] collection. The Cancer Imaging Archive.
- Gudbjartsson and Patz (1995) The Rician Distribution of Noisy MRI Data. Magnetic Resonance in Medicine, 34(6), 910-914.

ACKNOWLEDGMENT

- Prof. Arvind Rao (University of Michigan Depar Department of Radiation Oncology)
- Srikanth Kuthuru and Nicholas Wang

Prof. Arvind Rao (University of Michigan Department of Computational Medicine & Bioinformatics and

ſ

Input: MRI scans of the brain

Q: Model Details?

Output: prediction probability of positive IDH mutation

Model

Step 1: registration and isotropic resampling

Step 2: n4 bias correction and skull stripping

Step 3: image intensity normalization

Step 4: compile patient samples

Step 5: prediction

Q: What is Rician Noise?

$R = \sqrt{X^2 + Y^2} \text{ where } X \sim N(v \cos \theta, \sigma^2) \text{ and } Y \sim N(v \sin \theta, \sigma^2)$ $R = \sqrt{X^2 + Y^2} \text{ where } X \sim N(v, \sigma^2) \text{ and } Y \sim N(0, \sigma^2)$

Thank you!