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INTRODUCTION — Medical Background
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scans of the patient brain

» Four types of images are
generated with different settings

» Isocitrate dehydrogenase (IDH)
mutation status

» Increases survival probability

» Critical for treatment planning T T1post
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|NTRODUCT|ON . Model Input: MRI scans of the brain

Deep neural networks were developed to predict
IDH status from MRI scans [Chang et al., 201 8]
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Output: prediction probability of positive IDH mutation
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INTRODUCTION — Engineering Background
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» Deep neural network (DNN), a common data-driven » Uncertainty quantification (UQ) uses statistical
model, is trained to find relationship between input methods to produce a measure of confidence
and output on these predictions
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INTRODUCTION — Model

Input: MRI scans of the brain

UNCERTAINTY
Deep neural networks were developed to predict IDH QUANTIFICATION
status from MRI scans [Chang et al. 201 8] IS CRUCIAL

» Over 22 million weights were trained using only
496 data points

» Many unknowns with few data: overtitting

80% + 5%

\/ /\-\/\I\/\/ Output: prediction probability of positive IDH mutation

- Only single-value predictions: no uncertainty info
Overfitting g Y SINS P y
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INTRODUCTION — Objective

» To develop computational capability for quantitying uncertainty in DNN
models systematically and rigorously

» To determine the most sensitive factors in a model

» To assess robustness of model predictions against noise
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METHODS

Model Setup
» Test data: MRI scans of 63 patients from The Cancer Genome Atlas (TCGA) database

Noise in Model
» Analyze the sensitivity of predictions with respect to trained model weights

» Add random Gaussian noise (1%, 5%, 10%) to the trained weights

Noise in Data
» Quantify uncertainty of output due to data

» Add random Rician noise to each pixel of MRl scans
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METHODS
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METHODS

y vs X with Different Noise in All Coefficient
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METHODS

y vs X with 5% Noise in Different Coefficient
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RESULTS — Noise in Model

» Adding Different Levels of Gaussian Noise to All Model Weights (10 Runs)
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RESULTS — Noise in Model

» Adding Different Levels of Gaussian Noise to All Model Weights (10 Runs)
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» T1post Network is most sensitive to the noise

» Larger uncertainty observed when prediction probability is small

» T1 Network is less sensitive to large noise
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RESULTS — Noise in Model

» Adding Gaussian Noise to Weights in Different Layers

* All weights noisy
© Only layer 1 (1728 weights)
Only layer 211 (2,359,296 weights)
— No noise
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5% Gaussian noise is added to different

layers of T1post Network

Although layer 211 has many more weights

than layer 1, its noisy predictions have lower

uncertainty

Layer 1 contributes more to overall predictive

uncertainty than layer 211

This suggests some weights may be much

more important than others
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RESULTS — Noise in Data

» Comparison of Different Types of Noise in MRl images

» Different noise distributions in MR
images is hard to detect by human
eyes, but can cause large difference
in DNN predictions

» Rician noise is more commonly
used in MRI applications

[Gudbjartsson, 1995]

No Noise Image 10% Gaussian Noise 10% Rician Noise
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RESULTS — Noise in Data

» Adding Different Levels of Rician Noise to images (5 Runs)
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RESULTS — Noise in Data

» Adding Different Levels of Rician Noise to images (5 Runs)
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» Rician noise in images shifts predictions but produces less uncertainty than noise in weights

» The model appears more robust against image noise, but becomes less accurate
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DISCUSSION

» Predictions can be quite sensitive to noise in model weights, which can be aftected by the quality
of training data and structure of the deep neural network.

» Uncertainty should be quantified and subsequently reduced from models and data
» Enabling high-confidence predictions is imperative tfor decision-making on patient treatments

» Uncertainty quantification will help hospitals and developers to compare and improve models

WHAT'S NEXT

» Analyze relationship between uncertainty and other features of tumor such as size/volume
» Conduct sensitivity analysis layer by layer
» Provide a list of criteria for assessing model robustness and generalizability

» Repeat model evaluations to produce additional data for statistical analysis
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Q&A




Input: MRI scans of the brain

Q: Model Details?

Step 1: registration and isotropic resampling

Step 2: n4 bias correction and skull stripping

Step 3: image intensity normalization

Step 4: compile patient samples

Step 5: prediction

v

807%

Output: prediction probability of positive IDH mutation




Q: What is Rician Noise?

y R=1X?%+Y? where X ~ Nvcos0,c?) and Y ~ N(vsin 0, ¢?)

y R = \/X2 + Y? where X ~ N(v, 6%) and Y ~ N(0, ¢?)

Dingkun Guo 21



Thank youl!




