Assessing Uncertainty and Robustness in a Deep Neural
Network Model for the Determination of Gene Mutation
Status in Gliomas

Winter 2019 Mechanical Engineering Undergraduate Symposium

Dingkun Guo
Instructor: Xun Huan

May 2019

Abstract

Deep learning has emerged as a powerful and prevalent technique for building data-
driven models in medical diagnosis. However, most models only report single-value pre-
dictions, and are not capable of providing prediction uncertainty resulting from, among
other sources, noisy and limited training data. We thus seek to develop computational
capability for quantifying uncertainty in neural network (NN) models in a system-
atic manner. We focus on a particular residual convolutional NN model developed to
predict isocitrate dehydrogenase (IDH) mutation status in gliomas from preoperative
brain magnetic resonance imaging (MRI) [2]. Enabling uncertainty quantification for
this model is crucial for supporting subsequent treatment decision making. As a first
step, we analyze the sensitivity of model prediction to the trained weights. This is
achieved through a Monte Carlo sampling approach, where random noise is added to
the trained weights. Preliminary results indicate that a 5% perturbation to the weights
can alter the prediction probability of IDH mutation up to 10%.

1 Introduction

Modern medical research has witnessed a significant growth in usage of artificial intelligence
(AI) technology to assist decisions on patient genetic status, therapies, and diagnosis. One
example, the focus of this report, involves utilizing a deep neural network (DNN) model
to detect isocitrate dehydrogenase (IDH) gene mutation status from magnetic resonance
imaging (MRI) scans of the patient brain tumor. The IDH genetic mutation status carries
important information for medical diagnosis and prognosis, where tumors found to be IDH-
mutant have observed to significantly increase survival probability of patients compared to
their IDH-wild-type (i.e., without the mutation) counterparts [2]. Therefore, early determi-
nation of IDH mutation status can change surgical treatment planning and choice of therapy
management plans, for example to favor early intervention as opposed to observation under
certain situations [2].



However, noninvasive prediction of the IDH mutation status—that is, without extracting
glioma tissue and blood samples—remains a challenge One recent development of noninva-
sive techniques uses a DNN, a common data-driven machine learning (ML) model, to make
prediction of the IDH mutation status from MRI scans of the patient brain [2]. While this
represents the current state-of-the-art progress in medical Al technology, it is also crucial
to understand the uncertainty and quality of such model predictions before using this in-
formation for making medical decisions [1], which may be affected by, for example, noisy
and limited number of training data. Unfortunately, most current ML models produce only
single-value predictions, and the ability to report uncertainty in its predictions is largely
missing. We thus seek to enable these crucial capabilities through a formalized research
field known as uncertainty quantification (UQ), that quantitatively describes and tracks the
effects of noise and uncertainty using rigorous statistical principles. In this report, we con-
duct initial investigations in assessing the robustness of the publicly available DNN model
for predicting IDH mutation status [2], to test against noise in the model weight parameters
and input images.

This report is organized as follows. Section 2 introduces the the details of the publicly
available DNN model. We note that the DNN model available to us is already trained by its
authors, and we do not make alterations to it and only perform robustness assessments by
running it. Section 3 describes the methodology behind the robustness test cases. Numerical
results can be found in section 4, and the report ends with conclusions in section 5.

2 Model Setup

When we are using this public model as an example to assess robustness, we encountered
some technical difficulties. This section records the modification we made when we set up
this model.

As shown in Figure 1, the model originally has 5 steps, which are:

1. registration and isotropic resampling,
2. n4 bias correction and skull stripping,
3. image intensity normalization,

4. compile patient samples, and

5. prediction.

These computations are performed on a set of MRI scans accessible from The Cancer Genome
Atlas (TCGA) database [4]. The first step involves producing nii-format image files from raw
data, which is skipped in our operations because the files from TCGA is already nii form.
For step four, because TCGA database does not provide a whole 3D mask of tumor, we
create a mask by extruding a 2D cropped slice mask of tumor. In the final prediction, each
of the four networks in the model will read one type of MRI scans (in total four types of MRI
scans: Flair, T2, T1, and T1post) and make three predictions. Those 12 predictions will be



combined into one in a logistic regression. To compare four models, we use the predictions
before logistic regression.

TCGA contains MRI scans of 63 patients, and we use them as test data for conducting
the robustness assessment for the DNN model. In this case, every network will produce three
predictions for each patient, for a total of 189 predictions (results presented in section 4).

Input: MRI scans of the brain
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Step 1: registration and isotropic resampling

Step 2: n4 bias correction and skull stripping

Step 3: image intensity normalization

Step 4: compile patient samples

Step 5: prediction
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Output: prediction probability of positive IDH mutation

Figure 1: Five Steps to Run the Model

3 Methodology

To easily illustrate and analyze this model, we consider this model as y = DNN(x, w),
where input x is the MRI scans, parameter w is weights of model, and output y is the
prediction probability of positive IDH mutation status. We target to analyze the sensitivity
and robustness of the model predictions with respect to noise through two aspects: (1) noise
in the trained model weights, and (2) noise in input data.



3.1 Noise in Weights

A Monte Carlo sampling approach [5] is used, where different levels of random noise (1%,
5%, 10%) is added to trained DNN model weights. Then the output results is compared
with no-noise predictions.

Before deploying this technique on the DNN model, we first illustrate this concept through
a simple function as an example. Consider the following cubic polynomial model

y = 32° + 227 + 1, (1)

where the monomial coefficients play the same role as the DNN weights. On the one hand,
we first add different levels of noise in all coefficients. The “noisy” weights shift and distort
the output curve, and thus 10% noise cause a large output band while the 1%-noise-output
still stays around original output. One the other hand, we add same amount of noise in
different coefficients. This also results different changes in output as shown in Figure 2.
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Figure 2: Left: Adding different level of Gaussian noise in all the coefficients in a simple
function, Right: Adding 5% Gaussion noise in different coefficients

3.2 Noise in Data

To analyze the uncertainty caused by input data, noise is added into each pixel of MR scans.
Rician noise is chosen instead of Gaussian noise because Rician noise is more commonly
observed in MR scans [3]. Equation (2) shows the original Rician distribution. To simplify
the algorithm, we set 6 to zero and get (3). We define ¢ as v times noise percentage, where
the variable v is pixel data. Then we can get the R that is pixel data with noise.

R=+vVX2+ Y2 where X ~ N(vcosf,0?) and Y ~ N(sinf, o?) (2)
R=+vVX2+Y?2where X ~ N(v,0%) and Y ~ N(0, o?) (3)

The modified images are used as input to run the model, and the output predictions are
shown in subsection 4.3.



4 Results

We perform preliminary investigations on the robustness of the model with respect to noise.
Noise is added in weights and input data, and the results of output is shown below.

4.1 Noise in All Model Weights

Different levels of Gaussian noise is added to all the model weights. Figure 3 is obtained
after adding noise to weights and making predictions for 10 times. As a result, small amount
of noise can change the output a lot. For example, a 5% perturbation to the weights in
T1post network can alter predictions up to 20%. Also, T1post network is most sensitive to
the noise, and larger uncertainty observed when prediction probability is relatively small.
The plot also shows T1 Network is less sensitive to large noise, as large noise only change
its output about 10%, while other networks have over 20% difference in output. In addition,
most output shifts up, which means overestimated probability. For patient decision making,
as having IDH increases probability of survival, overestimated results could lead to less
invasive treatment, which can be dangerous.
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Figure 3: Adding Different Levels of Gaussian Noise to All Model Weights (10 Runs)

4.2 Noise in Different Layer

Five percent Gaussian noise is added to different layers of T1post Network. The results are
shown in Figure 4. Although the 211th layer has many more weights than the first layer,
its noisy predictions have lower uncertainty. In this case, we can conclude that the first
layer contributes more to overall predictive uncertainty than the 211th layer, which suggests
some weights may be much more important than others. If knowing which layers are more
sensitive, developers can concentrate on improving those important layers.
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Figure 4: Adding 5% Gaussian Noise to Weights in Different Layers

4.3 Noise in Test Data

Rician noise is added to MR scans in TCGA database. Those modified images are used as
input and the results are shown in Figure 5. The output band become condense compared
to Figure 3. This illustrates that Rician noise in data cause less uncertainty than noise in
weigts. Although the noise in data still shifts predictions, less uncertainty means the model
appears more robust against image noise. It is worth noting that T2 network perform quiet
well, without much changes even when 10% noise is added.
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Figure 5: Adding Different Levels of Rician Noise to Images (10 Runs)




5 Conclusions

In this paper, we performed some local sensitive analysis of the DNN model for predicting
IDH mutation status in brain tumors. After overcoming some technical difficulties in setting
up model, we implemented random sample methods to add noise in trained model weights
and test data. Different output caused by different level of noise, different layers of weights,
and noise in data were provided and discussed.

In conclusion, predictions from deep neural network models studied here can be quite
sensitive to noise in model weights, which are affected by the quality of training data and
structure of the deep neural network. Uncertainty should be quantified and subsequently
reduced from different aspects of models and data, to enable high-confidence predictions
imperative for decision-making for patient treatments.

As preliminary methods and results of accessing robustness and sensitivity of medical
AT models, we will repeat this kind of model evaluations to produce additional data for
statistical analysis. In addition, these methods and results lead to some interesting thoughts
of continuing this research. For the next steps, we will analyze the relationship between
uncertainty and other features of tumor such as size and volume and conduct sensitivity
analysis layer by layer to identify uncertainty contributions. These will allow us to develop
a systematical tool to analyze DNN as a black box and provide a list of criteria for assessing
model robustness and generalizability.
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